Protecting Queensland’s waterways

Gully mapping in Great Barrier Reef catchments

Improving water quality outcomes

Shawn Darr, Senior Spatial Information Officer
Department of Natural Resources, Mines and Energy
Paddock to Reef program

Paddock
- May-November
- Paddock monitoring
- Paddock modelling

Catchment
- December - April
- Catchment monitoring
- Catchment modelling
- Riparian extent
- Wetland condition
- Wetland extent
- Ground cover

Marine
- Seagrass monitoring
- Water quality monitoring
- Coral monitoring
- eReefs marine modelling
Do we need to worry about gullies?
Uncertainty in gully model inputs

- Initial gully density datasets not adequate
- Key attributes
 - Location
 - Gully volume
 - Current activity rate
 - Age (initiation date)
Gully mapping project
Grid based mapping approach

- Presence/absence mapping
- Rules
- Automated GIS tools
- Volunteer workforce
Gully geometry capture
Grid Based Mapping - Outputs

100m Gully Presence/Absence

1km Gully Density

NLWRA Gully Density

Protecting Queensland’s waterways
Progress & Results

Gully Count

Average Gully Length per 100 x 100 m cell (m)

Average Gully Cross-sectional area (m²)
Prioritising remediation

To improve targeted management effort:

• accurately map gullies
• differentiate gullies by size, type and sediment yields
• understand gully’s hydrological connectivity to the Great Barrier Reef
Shawn Darr
Senior Spatial Information Officer
Department of Natural Resources Mines and Energy
shawn.darr@dnrme.qld.gov.au

Protecting Queensland's waterways